

Cooling Tower Selection Considerations

March 26, 2025 Tom Vega, TVega@baltimoreaircoil.com

Learning Objectives

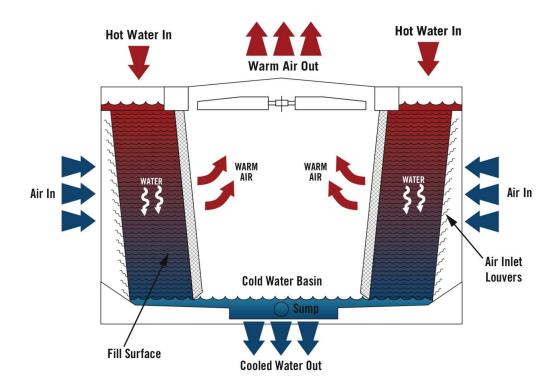
- Cooling Tower Basics
 - Definitions and Principle of Operation
 - Cooling Tower Classifications
 - Terminology and Selection Inputs
 - Codes and Standards
- Cooling Tower Selection Considerations
 - Energy efficiency and water usage
 - Layout
 - Sound

ASHRAE is a Registered Provider with the American Institute of Architects Continuing Education Systems. Credit earned on completion of this program will be reported to ASHRAE Records for AIA members. Certificates of Completion for non-AIA members are available on request.

This program is registered with the AIA/ASHRAE for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA or any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product. Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Cooling Tower Basics

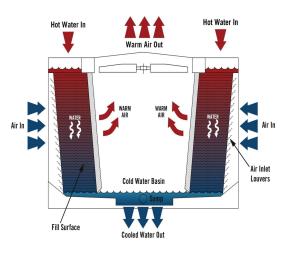
What is a Cooling Tower

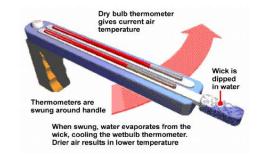

An enclosed, steady flow device used to dissipate low grade waste heat from water-cooled refrigeration, airconditioning and industrial process systems to the atmosphere through the evaporation of water.

How does a Cooling Tower Work?

A cooling tower enhances natural evaporative cooling processes by increasing the contact surface area and time of exposure between the circulating water and ambient air.

Principle of Operation




Thermal Performance Terms

"Range" = Entering Temp – Leaving Temp
"Approach" = Leaving Temp – Wet Bulb Temp
Total Heat of Rejection (BTUH) = Flow x Range x 500
MBH = 1,000 BTUH

Wet Bulb Temp = The temperature read by a thermometer covered in a water-soaked cloth over which air is passed.

Cooling tower ton = BTUH/15,000 (for a 10 degree range this = 3 GPM/Ton)

Design Wet Bulb for Des Moines

Design conditions for DES MOINES, IA, USA

Station Info	ormation														
Station nam	e			WMO#	Lat	Long	Elev	StdP	Hours +/- UTC	Time zone code	Period				
1a				1b	1c	1d	1e	1f	1g	1h	1i				
DES MOI	NES			725460	41.52N	93.65W	965	14.191	-6.00	NAC	7201				
Annual Hea	ating and Hu	midificatio	n Design Co	onditions											
Coldest	Heatin	a DB		Hum	nidification D	P/MCDB and	1 HR		(Coldest mont	h WS/MCDE	3	MCWS	/PCWD	
month		•		99.6%		-	99%			4%	1			5% DB	
	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS	MCDB	MCWS	PCWD	
2	<i>3a</i>	Зb	4a	4b	4c	4d	4e	4f	5a	5b	5c	5d	6a	6b	
1	-7.8	-2.9	-18.3	2.1	-6.1	-13.0	2.8	-2.0	31.0	14.1	28.1	14.3	10.5	310	
Annual Coo	oling, Dehum	idification	, and Enthal	lpy Design (Conditions				_						
	Hottest			Coolina D	B/MCWB					Evaporation	WB/MCDB			MCWS	/PCWD
Hottest	month	0.4	4%		%	2	%	0.	4%	15			%	to 0.4	
month	DB range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD
7	8	9a	9b	9с	9d	9e	9f	10a	10b	10c	10d	10e	10f	<mark>1</mark> 1a	11b
7	18.3	93.5	76.0	90.3	74.8	87.4	73.3	78.2	89.1	76.9	87.4	75.3	84.9	12.3	190

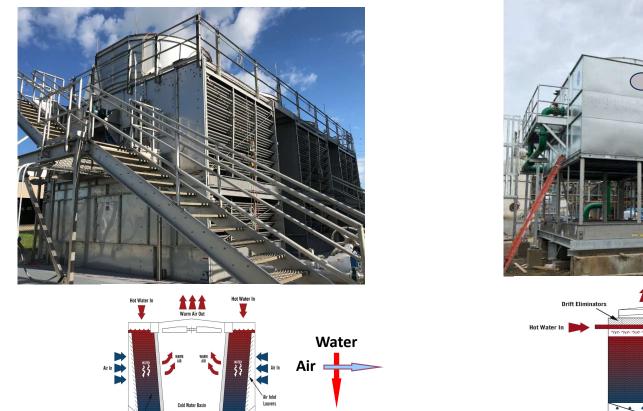
Cooling Tower Types

Modular vs Field Erected

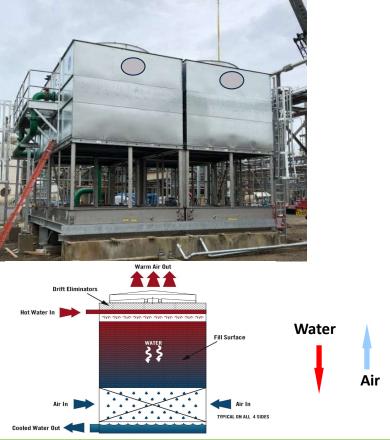
Cooling Tower Fan Types

Centrifugal Fans

- High volume/static pressures
- High energy consumption
- Quiet operation
- Indoor applications

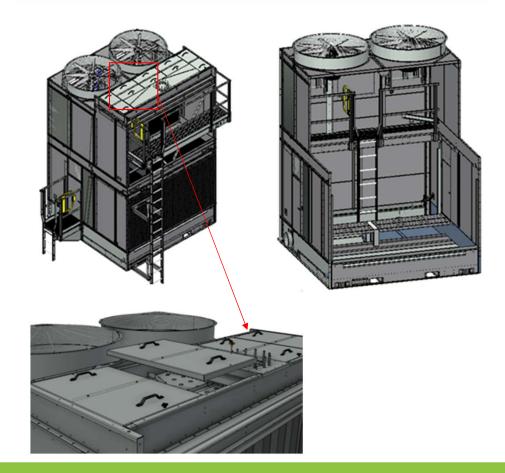

Axial Flow Fans

- High volume/low static pressure
- Low energy consumption



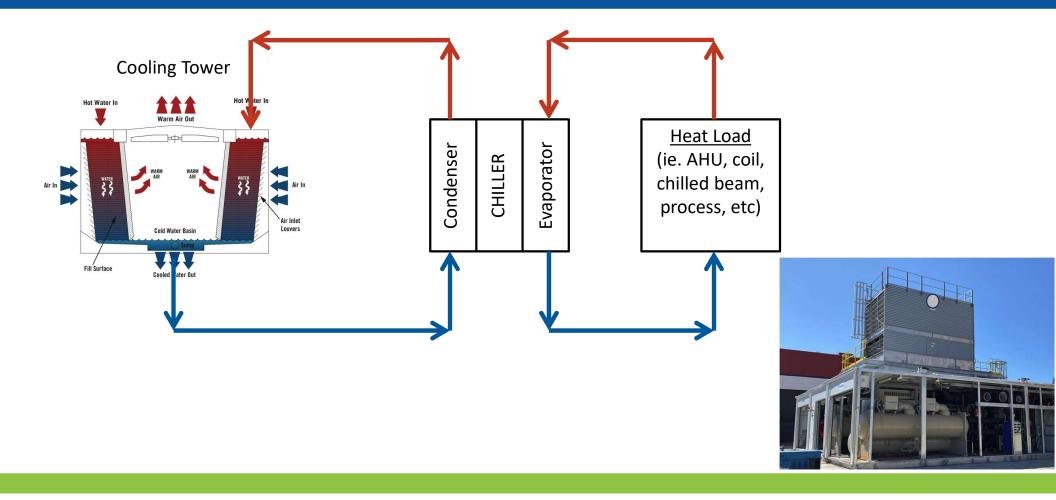
Crossflow Versus Counterflow

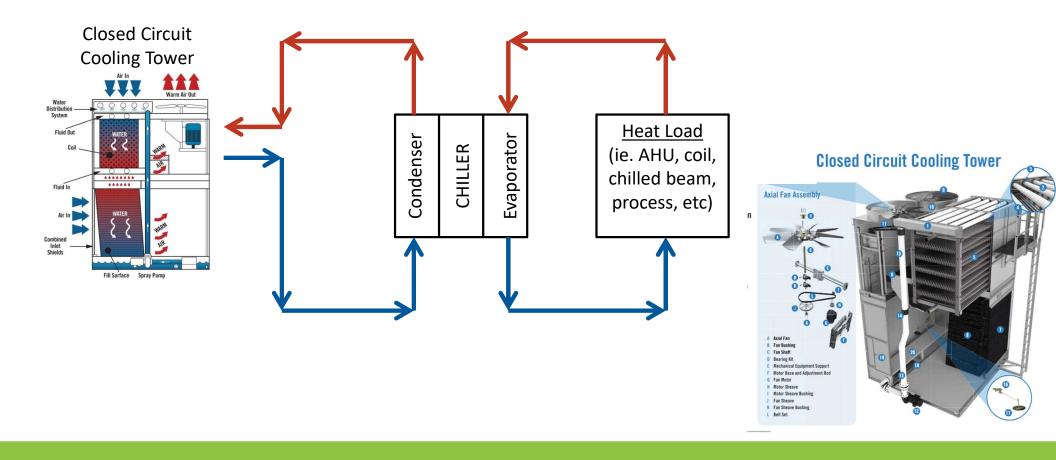
Cooled Water Out


Fill Surface

Crossflow Versus Counterflow Maintainability

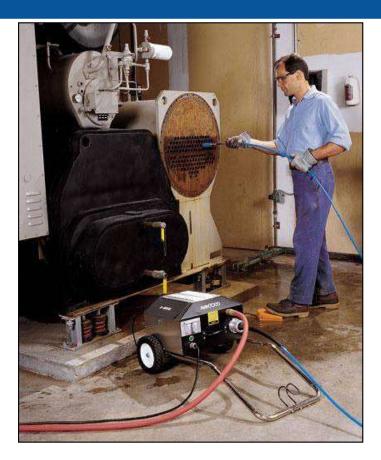
Maintenance Check List


- Check fan pitch quarterly
- Lubricate fan shaft bearings quarterly
- Check spray nozzles quarterly
- Inspect cold water basins quarterly


Recommended Maintenance Service^[1]

Inspect and clean as necessary:	Start-Up	Monthly	Quarterly	Annually	Shutdown		
Inspect general condition of the unit ⁽²⁾ and check unit for unusual noise or vibration	1	1					
Inspect cold and hot water basins	1		1		6		
Flush water distribution system/Inspect spray nozzles	1		J				
Drain basin and piping	1				1		
Inspect air intake louvers/Combined inlet shields	1	J					
Check and adjust water level in cold water basin	1	1					
Check operation of make-up valve	1	J					
Check and adjust bleed rate	1	1			1		
Check optional EASY CONNECT® Piping Arrangement	1				1		
Inspect unit finish				1			
Mechanical equipment system:	Start-Up	Monthly	Quarterly	Annually	Shutdown		
Check belt condition		V			6		
Adjust belt tension ⁽³⁾	1		1				
Lubricate fan shaft bearings ⁽⁴⁾	1		1		1		
Lubricate motor base adjusting screw	1		J		1		
Check and lubricate optional gear drive or ENDURADRIVE® Fan System	See "Fan Drive System" on page 13 for detailed instructions and schedule.						
Check drive alignment				1			
Check motor voltage and current	1		1				
Clean fan motor exterior	1		V		0		
Check fan motor for proper rotation	1						
Check general condition of the fan	1		1				
Verify fan blade drain holes are not obstructed (hollow blade fans)			1				
Check fan for uniform pitch			1				
Check fan for rotation without obstruction	1		V		1		
Verify the fan guard is properly installed	1			1			
Verify the operation and function of electric immersion heater and controls, if so equipped			1				
Check and recoat steel shafts with RUST VET0®	1		V		1		
Check optional vibration cutout switch	V			1			

Open Cooling Towers



Closed Circuit Cooling Tower

Benefits of Closed Circuit Systems

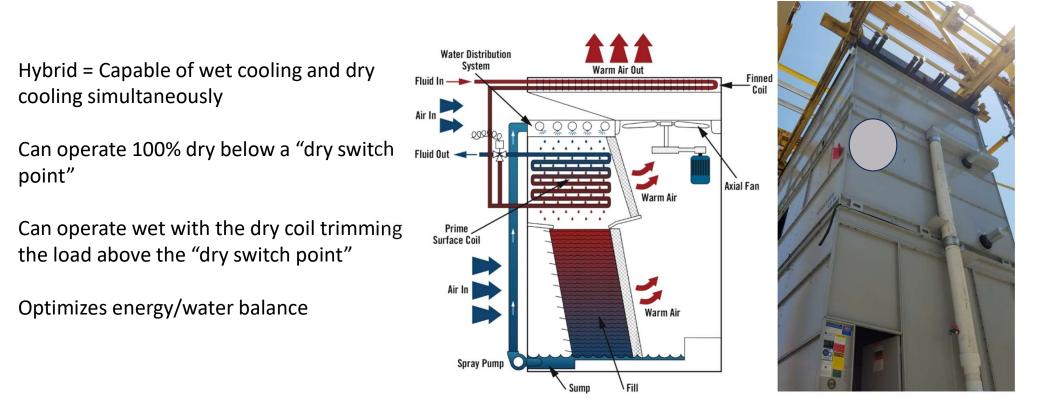
- Reduced Maintenance Cost
 - Equipment fouling is minimized
 - Less shutdowns for cleaning
 - Location flexibility a CCCT can be located at grade or below the load.
 - Can cool fluids other than water (e.g. glycol).

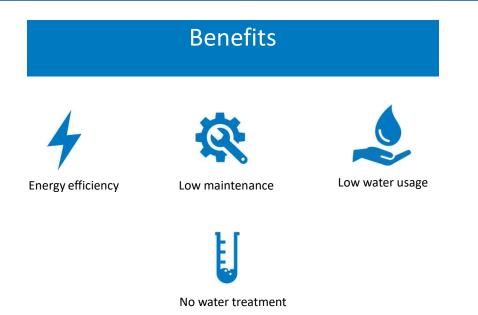
CCCT Primary Applications

HVAC applications

- Water source heat pumps
- Water cooled VRF
- Modular Chillers
- Tower location flexibility

Process cooling applications


- Air compressors
- Welding machines
- Waste water cooling
- Machine cooling



CCCT used whenever cleanliness of the cooling loop is critical

Hybrid Fluid Coolers

Adiabatic Fluid Coolers

Combines the Benefits of Air Cooled and Evaporative

19

Common Codes and Standards

Industry Codes and Standards

- ASHRAE 90.1
- CTI Certified Performance
- IBC (Wind and Seismic)
- FM Global (Standard 4930)

ASHRAE 90.1 2022

Energy Standard for Buildings Except Low-Rise Residential Buildings

95°/85°/75° for Open Towers

≥ 40.2 gpm/hp for open axial towers≥ 20.0 gpm/hp for open centrifugal fan**

102°/90°/75° for closed towers (pump hp included in HP #) ≥ 16.1 gpm/hp for axial ≥ 7.0 gpm/hp for centrifugal

**Above 1100 gpm flows @ 95/85/75 centrifugal fans must meet axial efficiencies unless they are ducted or require sound attenuation.

CTI Ratings

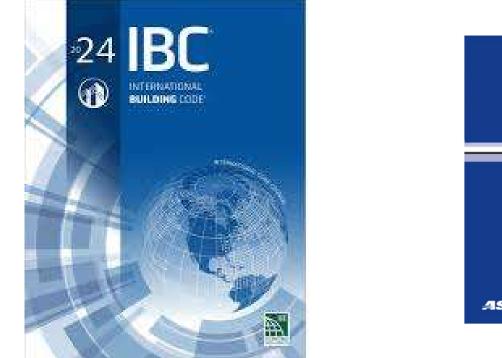
Wet bulb: 60-90°F

Maximum process fluid temp. 125°F

Minimum Range: 4°F

• (EWT-LWT)

Minimum Approach: 5°F


• (LWT-WB)

Accessories may affect a product's certification

CTI Ratings for each tower line can be found on the CTI web site (CTI.org)

IBC and ASCE-7

Specify the appropriate version of the code

Shake Table Testing

Testing

- Full-size towers tested at independent test laboratories
- Testing conducted on tri-axial shake tables in accordance with AC 156 with input motions satisfying IBC
- Functional tests conducted before and after shaking for Ip = 1.5
- IP 1.5 typical of mission critical facilities e.g. hospitals

Important for manufacturers to know if IP 1.5 is required

FM Global

Global insurance company

- Standard 4930 written for single and multi-cell installations
- Influences the number of cells, materials of construction, and cell spacing
- Have equipment approval guides
- Only relevant for FM Global customers (no benefit to non customers).

This is only applicable for FM Global Customers

FM Approval for Cooling Towers

FM approved cooling towers must meet the requirements and acceptance criteria of the *Approval Standard for Cooling Towers, Class Number 4930*

Scope of *Standard* includes fire, wind and seismic hazards

Latest Standard

Fire

Combustibility:

• A tower must contain damage from a fire to the cell of origin and not spread to adjacent cells or impose a fire hazard to adjacent structures.

Post Fire Operating Capacity

- If one cell is consumed by fire, the remaining cell(s) must be able to provide extra capacity as needed.
- Effective April 2017 75% reserve capacity is no longer required for FM approved applications.

Wind

Zone HM

Hurricane + Missile

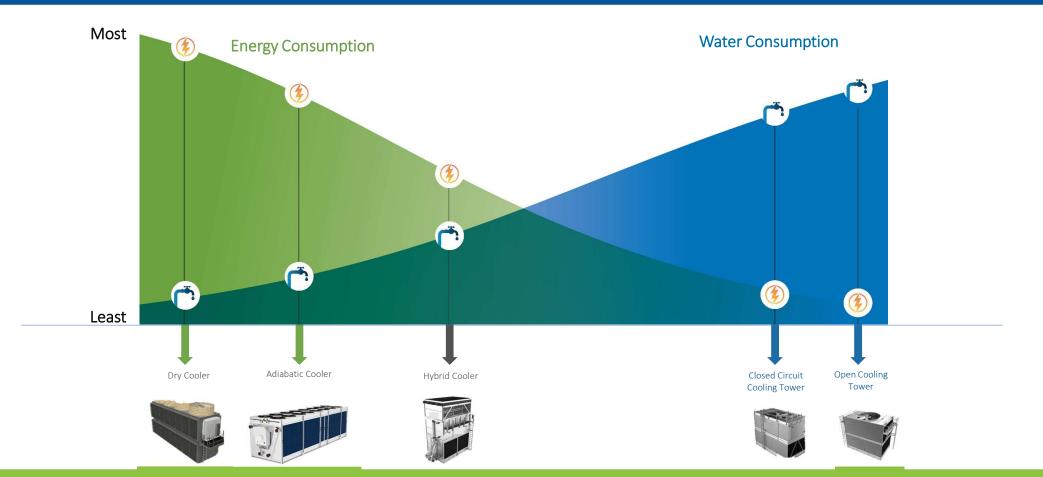
Hurricane-prone regions and subject to missile impact from windborne debris

Zone H

Hurricane

Hurricane-prone regions but not subject to missile impact from windborne debris

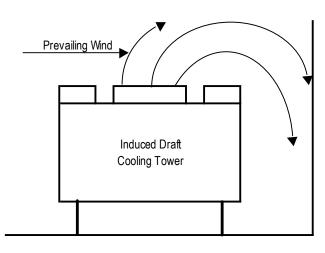
Zone NH


Non Hurricane

No hurricanes or missile impact from windborne debris

Energy efficiency and water usage

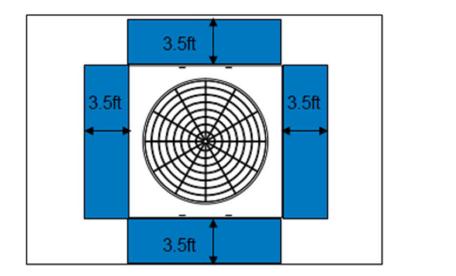
Fluid Cooling - Equipment Options

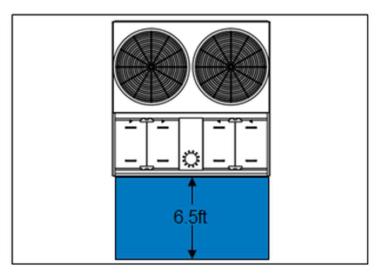

Layout

Fresh Air Intake: Recommendations

- Provide adequate intake space to insure proper intake velocities
 > Air envelope velocity< 400 fpm
 > Well downward air velocity < 400 fpm
- Discharge air at or above surrounding walls or enclosures
- Place unit 3' away from louvers
- Size air intake louvers for < 600 fpm and 50% FA
- Consider prevailing summer winds
- Elevating towers on steel provides more intake area
- Consider undercutting walls as an alternative to full louvers
- Uptime: Need to shutdown middle cells

Layout Guidelines
Included are the design layout guidelines for evaporative cooling products in several situations typically encountered by designers. These guidelines represent minimum spacing requirements. If available, greater spacing should be utilized whenever possite
> Overview
Operational efficiency of evaporative cooling equipment depends upon an adequade apply of thesh, ambiont air to provide design capacity. Other important considerations, such as the pointing to building air indexe or dischages, also must be taken into account when selecting and designing the equipment site.
As the size of an installation increases, the fad amount of head heing (10 Yab Kow) rejected into the dimensional control of dischage and increases — by the point where the units can write all control of dischage and the solution of dischage and the solution increases. The point where the units can write all control on apply and of general guidelines in the solution in the solution of the solut
Actial fan units are not generally suited for indoor or ducted applications. In post wiee the site can such situations, a Series V centrifugal fan unit is recommended. verfally ceel teater or ervicement.
This section covers the general layout guidelines for the following BAC products:
1. Series 3000 Cooling Towers
2. Series 1500 Cooling Towers
 FXT Cooling Towers Series V Cooling Towers, Closed Circuit Cooling Towers, and Evaporative Condensers
 Series v cooling rovers, closed chost cooling rovers, and Evepolative concenses FXV Closed Circuit Cooling Towers
6. HXV Hybrid Closed Clicuit Cooling Towers
7. CXVB and CXV-T Evaporative Condensers
For PT2 and PC2 layout guidelines, see page J110. For more detailed layout guidelines pertaining to each product please w


Recirculation Example



Layout Comparison 20HP Max, 20'x28' Well

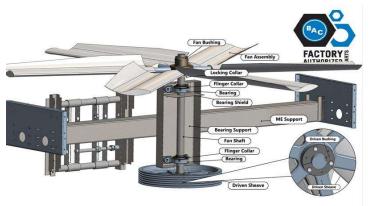
Multicell Layout Best Practices

Breaks in the lines of cells allow for greater uptime

Drive Types and Materials

Drive Types

Belt Drive


- Lowest first cost
- Easy to stock and replace
- Excellent for winter operation

Gear Drive

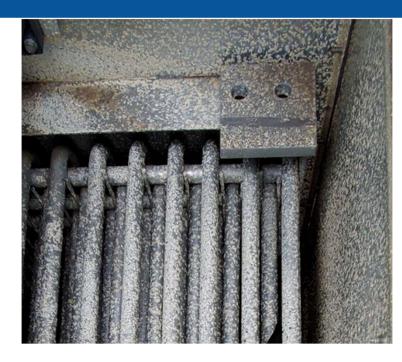
- More typical at higher HP
- Accessories often required

Direct Drive

- Premium first cost
- Eliminates majority of maintenance

Water Quality

	Recommended Levels for Various Materials of Construction							
Property of Water	Galvanized Steel	Thermosetting Hybrid Polymer	Type 304 Stainless Steel	TriArmor® Corrosion Protection System or Type 316 Stainless Steel				
pH	6.5 to 9.0 ⁽¹⁾	6.5 to 9.2 ^[1]	6.5 to 9.2 ^[1]	6.5 to 9.5 ^[1]				
Total Suspended Solids	25 ppm	25 ppm	25 ppm	25 ppm				
Total Dissolved Solids (TDS)	1,500 ppm	2,050 ppm	2,050 ppm	2,500 ppm				
Conductivity	2,400 (microohms/cm)	3,300 (microohms/cm)	3,300 (microohms/cm)	4,000 (microohms/cm)				
Alkalinity as CaCO ₃	500 ppm ^[2]	600 ppm ^[2]	600 ppm ^[2]	600 ppm ^[2]				
Calcium Hardness as CaCO ₃	50 to 600 ppm ^[2]	50 to 750 ppm ^[2]	50 to 750 ppm ^[2]	50 to 750 ppm ^[2]				
Chlorides (CL)	250 ppm	300 ppm	300 ppm	750 ppm				
Sulfates	250 ppm	350 ppm	350 ppm	750 ppm				
Silica	150 ppm	150 ppm	150 ppm	150 ppm				


Table 1. Quality Guidelines for Treated Circulating Water

MOC choice has significant impact on the lifespan of the equipment

Passivation

- Performed at startup by the water treatment company
- 4-8 weeks in duration, ideally no heat load
- If missed or done improperly white rust forms

Galvanized steel in the wetted area requires passivation

Sound

Sound Ratings

- Per CTI ATC-128 revision 2019
- Specify sound ratings in dB from each face (5) and 50ft typical)
- Be mindful of cell count.

Project Name: Selection Name: Project State/Province: Project Country/Region: United States September 07, 2023 Date:

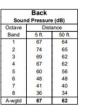
Model Information

Product Line: Series 1500 Model: XES15E-1212-10JN Number of Units: 1 Fan Type: Standard Fan Fan Motor: (2) 7.50 = 15.00 HP/Unit Total Standard Fan Power: Full Speed, 15.00 BHP/Unit

Intake Option: None Internal Option: None Discharge Option: None

Sound	Top Pressur	e (dB)
Octave	Dist	ance
Band	5 ft.	50 ft.
1	76	64
2	81	68
3	80	67
4	81	67
5	76	63
6	71	58
7	66	52
8	59	45
A-wgtd	81	68

End


Sound Pressure (dB) Distance 5 ft. 50 ft.

> 74 64

61 61

55 47

Octave band and A-weighted sound pressure levels (Lp) are expressed in decibels (dB) reference 0.0002 microbar. Sound power levels (Lw) are expressed in decibels (dB) reference one picowatt. Octave band 1 has a center frequency of 63 Hertz.

End Sound Pressure (dB) Distance 5 ft. 50 ft.

> 67 61

61

Octave Band 69 63

2 74 64

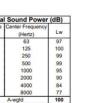
3 69 61 67 4

5 59 55 47

6 51 44 40 33 36

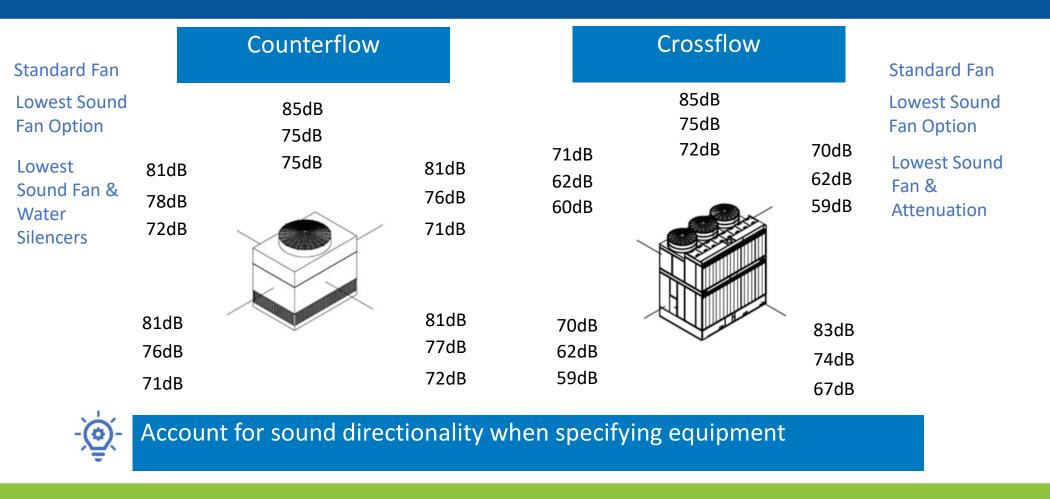
A-wgtd

Octave


Band

1 69 63

2


3 4

Tota	Sound Power	(dB)	
Octave Band	Center Frequency (Hertz)	Lw	
1	63	97	
2	125	100	
3	250	99	
4	500	99	
5	1000	95	
6	2000	90	
7	4000	84	
8	8000	77	

7	44	40
8	36	33
A-wgtd	67	61
	Air Inle	
Octave		tance
Band	5 ft.	50 f
1	75	66
2	82	70
3	81	65
4	80	68
5	73	61
6	66	55
7	58	48
8	52	37
A-wgtd	80	67

Sound Levels at 5ft, 500 Ton Example

Conclusions

Many factors impact cooling tower selection!

- Capacity
- Open vs Closed
- Footprint and height
- Indoors vs Outdoors
- Energy efficiency vs water usage
- Ease of maintenance
- Material selection
- Code Compliance
- Layout
- Sound

Questions

